Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in English | ProQuest Central | ID: covidwho-2327274

ABSTRACT

Diarrhea outbreaks in piglets on pig farms are commonly attributed to porcine epidemic diarrhea virus (PEDV) infection. This research analyzed the S gene prevalence variation and recombination patterns in PEDV GII strains. Throughout the previous two years, 172 clinical samples of piglet diarrhea have been collected, from which 24 PEDV isolates have been isolated. Analysis of the evolutionary relationships among all 24 S genes revealed that 21 were most closely related to strains within the GII-a subgroup. The 2 isolates grouped into one clade with the GII-b subgroup. According to the mutation analysis of the amino acids (aa) that encode the S protein, 43 of the common aa in strains of the GII subtype were found to have undergone a change in polarity or charge, and 36 of these aa had a mutation frequency of more than 90%. Three different aa mutation sites were identified as exclusive to GII-a subtype strains. The genomes of three PEDV isolates were sequenced, and the resulting range in genome length was 28,035−28,041 nt. The results of recombination analysis showed that the SD1 isolate is a novel strain recombinant from the foreign S-INDEL strain and a domestic GII subtype strain. Based on the findings, the PEDV GII-a strain has been the most circulating strain in several parts of China during the previous two years. Our study reveals for the first time the unique change of aa mutations in the S protein of the GII-a subtype strain and the new characteristics of the recombination of foreign strains and domestic GII subtype strains, indicating that it is crucial to monitor the epidemic dynamics of PEDV promptly to prevent and control the occurrence of PED effectively.

2.
Front Immunol ; 13: 984448, 2022.
Article in English | MEDLINE | ID: covidwho-1987499

ABSTRACT

Interferons (IFNs) including type I/III IFNs are the major components of the host innate immune response against porcine epidemic diarrhea virus (PEDV) infection, and several viral proteins have been identified to antagonize type I/III IFNs productions through diverse strategies. However, the modulation of PEDV infection upon the activation of the host's innate immune response has not been fully characterized. In this study, we observed that various IFN-stimulated genes (ISGs) were upregulated significantly in a time- and dose-dependent manner in LLC-PK1 cells infected with the PEDV G2 strain FJzz1. The transcriptions of IRF9 and STAT1 were increased markedly in the late stage of FJzz1 infection and the promotion of the phosphorylation and nuclear translocation of STAT1, implicating the activation of the JAK-STAT signaling pathway during FJzz1 infection. In addition, abundant type I/III IFNs were produced after FJzz1 infection. However, type I/III IFNs and ISGs decreased greatly in FJzz1-infected LLC-PK1 cells following the silencing of the RIG-I-like receptors (RLRs), including RIG-I and MDA5, and the Toll-like receptors (TLRs) adaptors, MyD88 and TRIF. Altogether, FJzz1 infection induces the production of type-I/III IFNs in LLC-PK1 cells, in which RLRs and TLRs signaling pathways are involved, followed by the activation of the JAK-STAT signaling cascade, triggering the production of numerous ISGs to exert antiviral effects of innate immunity.


Subject(s)
Interferon Type I , Porcine epidemic diarrhea virus , Animals , Cell Line , Signal Transduction , Swine , Toll-Like Receptors
SELECTION OF CITATIONS
SEARCH DETAIL